
Implementation of the GRIDSPEC
extensions into LibCF

Alex Pletzer, Dave Kindig, and Srinath Vadlamani (Tech-X) –
LibCF/GRIDSPEC

Ed Hartnett (UCAR) – LibCF and NetCDF

With contributions from
V Balaji and Zhi Liang (GFDL) – Mosaic and GRIDSPEC

Charles Doutriaux, Jeff Painter, and Dean Williams (LLNL) – CDAT, CMIP5
Steve Hankin and Ansley Manke (PMEL) – CF, Ferret

Jonathan Gregory (UK Met Office) – CF

pletzer@txcorp.com

May 10-12 2011, GO-ESSP, Ashville NC
Work funded by MoDAVE: DOE/SBIR DE-FG02-08ER85153

CF conventions (1.5) want all the data
stored in a single NetCDF file

• Mainly designed to cover longitude-latitude grids
• Each variable (field) has assigned attributes such as

– standard_name, e.g. “air_temperature”
– units, e.g. “K”
– [coordinates, e.g. “lat lon”]

• Grid and data live in the same file
• Current CF conventions don't scale to hi-res

– 500 years, daily, 1degx1deg require O(1-100TB)
– 1-100 days to transfer over the wire

• CF 1.5 doesn't play well with:
– Time aggregated data (could use union aggregation in

NcML)
– Data distributed over multiple grids (e.g. mosaics)

http://cf-pcmdi.llnl.gov/documents/cf-conventions/1.5/cf-conventions.html

Mosaics form a new class of grids

• Addressing the need to avoid poles
– Problems of numerical stability (Courant condition

violated when using explicit time stepping. May
need to apply filtering techniques to damp
oscillations at the poles.

– “Over”-resolution near the poles (waste of
resources)

cubed-sphere

Calhoun-Helzel-LeVeque '08tripolar

Small degree of
unstructuredness

Murray '96

Mosaics (tripolar, cubed-sphere, ...) are
unstructured assemblies of (typically) structured
grids

• Each tile is a curvilinear grid
• Complex folding between tiles in index space
• Unstructured assembly of structured grids
• Many more variations beyond cubed-sphere and

tripolar

Mosaics add flexibility to structured grids

• Without paying the cost of unstructured grids

regularity

flexibility

uniformuniform

curvilinear

mosaic

Unstructured
& geodesic?

Irregular indexing
irregular positions

Regular indexing
regular positions

Geodesic grid ~ Voronoi mesh obtained from an unstructured grid

Regular indexing
Irregular positions

Mostly regular indexing
Irregular positions

CF extension proposal to allow variable,
time, and spatial aggregation submitted

• Different variables stored in different files
– Time slices of a variables stored in different files

• Spatial subsets (tiles) of a variable stored in
different files

Host file (F-SPEC)

Mosaic file (M-SPEC) Data31 Data32... Grid3

Data21 Data22... Grid2

Data11 Data12... Grid1

https://ice.txcorp.com/trac/modave/wiki/CFProposalGridspec

Host file is single entry point
All files are NetCDF

M-SPEC: Mosaic file describes the grid
connectivity in index space

• GRIDSPEC developed by GFDL group
• Syntax expresses mapping of index ranges on one

tile to index ranges on neighbor tile
– e.g. “1:3 4:4 | 0:5 5:5”, “0:3 2:2 | 2:0 1:2”
– C style indexing, 0-based, end index is inclusive
– Tiles can have different resolution
– Tiles can overlap

Surfacial Volumetric

LibCF is an API implementing the CF
conventions

• Developed at UCAR to facilitate CF compliance
• Supports F-SPEC (file aggregation) and M-SPEC

(mosaic aggregation)

http://cf-pcmdi.llnl.gov/

http://www.unidata.ucar.edu/software/libcf/docs/

http://cf-pcmdi.llnl.gov/

LibCF/GRIDSPEC API uses a layered
approach to represent coordinates, grids,
data, mosaic, and host

coord

grid

datamosaic

regridhost

Each object only depends on objects below

axis

Global attr, .. Netcdf,...

Users can enter
the API at any
level.

LibCF API facilitates language
interoperability

• Code written in C follows NetCDF's calling conventions

• Extensible to other languages (arguments are primitive types).
 Make it easy to call from Python, Ferret, Fortran, NCL,

• Uses uuid (coordinates_id, data_id) to track a unified data
set (grid, data, mosaic, host)

• Define, write and free
– nccf_def_XXXX(..., &id); // constructor
– nccf_put_XXXX(ncid, id); // write to file
– nccf_free_XXXX(id); // destructor

• Define from file
– nccf_def_XXXX_from_file(filename,..., &id);

Integer ID maps to object
in memory

Linear regridding/interpolation in LibCF
• N-dimensional, linear interpolation only at this point

– Straightforward to parallelize
• Pseudo-Newton search of position in index space

– Only one iteration required for uniform, rectilinear grids
• Line search to improve convergence
• Use previous index location as initial guess when regridding from

structured to structured grid

Tripolar to lon-lat

3 tiles of cubed sphere to lon-lat

3D

Use case for mosaic connectivity: generate
the seam grid to fill gaps

+ =

Cell centered data
not using mosaic

Generating seam
and corner grids

The Climate Data Analysis Tools (CDAT)
opens the host and constructs the seam grids

No visible grid boundaries when adding
seam grids

• GFDL CM2.1 air temperature and precipitation data
from the finite volume dynamic core (FV) [Lin '04]

Summary

• Mosaic grids combine the advantages of
structured grids (in terms of efficiency)
and unstructured grids (in terms of
regular cell sizes)

• Proposal submitted to CF committee to
add support for mosaics.

• LibCF has a mosaic compliant
implementation

– Dimensional agnostic (1D, 2D, 3D,...)
– Can also do variable and time

aggregation (would require another talk)
– We can help getting started...

Open issues

• Field staggering (e.g. C and D Arakawa) not
included in the CF extension proposal. CF assumes
fields are nodal by default.

• Can one use cell_methods for curvilinear grids?
– Different possibilities

• supergrid: union of all staggered grids. Leads to
strides in memory.

• rely on the dimensions of the data. Dangerous:
would not be able to discriminate between
north-east and south-east face centered data.

• new netCDF attribute, e.g. cell_offset = [-1, 0, 0]
to indicate location of data on west cell face.

• dual grids: define multiple grids, each slightly
offset one from another.

Thanks for your attention!

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15

